由摩尔定律驱动的计算系统性能的改善已改变了社会。由于这种硬件驱动的收益放缓,对于软件开发人员而言,专注于开发过程中的性能和效率变得更加重要。尽管几项研究表明了这种提高的代码效率的潜力(例如,与硬件相比,2倍更好的世代改进),但在实践中解锁这些收益是充满挑战的。关于算法复杂性以及硬件编码模式的相互作用的推理对于普通程序员来说可能是具有挑战性的,尤其是当与围绕开发速度和多人发展的务实约束结合使用时。本文旨在解决这个问题。我们分析了Google Code JAM竞争中的大型竞争编程数据集,并发现有效的代码确实很少见,中位数和第90%的解决方案之间的运行时间差异为2倍。我们建议使用机器学习以提示的形式自动提供规范反馈,以指导程序员编写高性能代码。为了自动从数据集中学习这些提示,我们提出了一种新颖的离散变异自动编码器,其中每个离散的潜在变量代表了不同的代码编辑类别,从而提高了性能。我们表明,此方法代表代码效率的多模式空间比序列到序列基线更好地编辑,并生成更有效的解决方案的分布。
translated by 谷歌翻译
3D object detection is vital as it would enable us to capture objects' sizes, orientation, and position in the world. As a result, we would be able to use this 3D detection in real-world applications such as Augmented Reality (AR), self-driving cars, and robotics which perceive the world the same way we do as humans. Monocular 3D Object Detection is the task to draw 3D bounding box around objects in a single 2D RGB image. It is localization task but without any extra information like depth or other sensors or multiple images. Monocular 3D object detection is an important yet challenging task. Beyond the significant progress in image-based 2D object detection, 3D understanding of real-world objects is an open challenge that has not been explored extensively thus far. In addition to the most closely related studies.
translated by 谷歌翻译
Recent methods demonstrate that data augmentation using counterfactual knowledge can teach models the causal structure of a task, leading to robust and generalizable models. However, such counterfactual data often has a limited scale and diversity if crowdsourced and is computationally expensive to extend to new perturbation types if generated using supervised methods. To address this, we introduce a new framework called DISCO for automatically generating high-quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters the generation to distill high-quality counterfactual data. We show that learning with this counterfactual data yields a comparatively small student model that is 6% (absolute) more robust and generalizes 5% better across distributions than baselines on various challenging evaluations. This model is also 15% more sensitive in differentiating original and counterfactual examples, on three evaluation sets written by human workers and via human-AI collaboration.
translated by 谷歌翻译
Recent work has shown that large language models are capable of generating natural language reasoning steps or Chains-of-Thoughts (CoT) to answer a multi-step question when prompted to do so. This is insufficient, however, when the necessary knowledge is not available or up-to-date within a model's parameters. A straightforward approach to address this is to retrieve text from an external knowledge source using the question as a query and prepend it as context to the model's input. This, however, is also insufficient for multi-step QA where \textit{what to retrieve} depends on \textit{what has already been derived}. To address this issue we propose IRCoT, a new approach that interleaves retrieval with CoT for multi-step QA, guiding the retrieval with CoT and in turn using retrieved results to improve CoT. Our experiments with GPT3 show substantial improvements in retrieval (up to 22 points) and downstream QA (up to 16 points) over the baselines on four datasets: HotpotQA, 2WikiMultihopQA, MuSiQue, and IIRC. Notably, our method also works well for much smaller models such as T5-Flan-large (0.7B) without any additional training.
translated by 谷歌翻译
Voice assistants are deployed widely and provide useful functionality. However, recent work has shown that commercial systems like Amazon Alexa and Google Home are vulnerable to voice-based confusion attacks that exploit design issues. We propose a systems-oriented defense against this class of attacks and demonstrate its functionality for Amazon Alexa. We ensure that only the skills a user intends execute in response to voice commands. Our key insight is that we can interpret a user's intentions by analyzing their activity on counterpart systems of the web and smartphones. For example, the Lyft ride-sharing Alexa skill has an Android app and a website. Our work shows how information from counterpart apps can help reduce dis-ambiguities in the skill invocation process. We build SkilIFence, a browser extension that existing voice assistant users can install to ensure that only legitimate skills run in response to their commands. Using real user data from MTurk (N = 116) and experimental trials involving synthetic and organic speech, we show that SkillFence provides a balance between usability and security by securing 90.83% of skills that a user will need with a False acceptance rate of 19.83%.
translated by 谷歌翻译
Language models are widely deployed to provide automatic text completion services in user products. However, recent research has revealed that language models (especially large ones) bear considerable risk of memorizing private training data, which is then vulnerable to leakage and extraction by adversaries. In this study, we test the efficacy of a range of privacy-preserving techniques to mitigate unintended memorization of sensitive user text, while varying other factors such as model size and adversarial conditions. We test both "heuristic" mitigations (those without formal privacy guarantees) and Differentially Private training, which provides provable levels of privacy at the cost of some model performance. Our experiments show that (with the exception of L2 regularization), heuristic mitigations are largely ineffective in preventing memorization in our test suite, possibly because they make too strong of assumptions about the characteristics that define "sensitive" or "private" text. In contrast, Differential Privacy reliably prevents memorization in our experiments, despite its computational and model-performance costs.
translated by 谷歌翻译
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data and proved offline reinforcement learning to be an essential toolkit in learning control policies in a model-free setting. An offline reinforcement learning algorithm applied to a dataset collected by a suboptimal non-learning-based algorithm can result in a policy that outperforms the behavior agent used to collect the data. Such a scenario is frequent in robotics, where existing automation is collecting operational data. Although offline learning techniques can learn from data generated by a sub-optimal behavior agent, there is still an opportunity to improve the sample complexity of existing offline reinforcement learning algorithms by strategically introducing human demonstration data into the training process. To this end, we propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data and guide policy training towards optimal behavior while reducing overall sample complexity. Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent. We augmented an existing offline reinforcement learning algorithm Conservative Q-Learning with our approach and performed experiments on data collected from MuJoCo and OffWorld Gym learning environments.
translated by 谷歌翻译
We develop a novel framework for single-scene video anomaly localization that allows for human-understandable reasons for the decisions the system makes. We first learn general representations of objects and their motions (using deep networks) and then use these representations to build a high-level, location-dependent model of any particular scene. This model can be used to detect anomalies in new videos of the same scene. Importantly, our approach is explainable - our high-level appearance and motion features can provide human-understandable reasons for why any part of a video is classified as normal or anomalous. We conduct experiments on standard video anomaly detection datasets (Street Scene, CUHK Avenue, ShanghaiTech and UCSD Ped1, Ped2) and show significant improvements over the previous state-of-the-art.
translated by 谷歌翻译
The tropical cyclone formation process is one of the most complex natural phenomena which is governed by various atmospheric, oceanographic, and geographic factors that varies with time and space. Despite several years of research, accurately predicting tropical cyclone formation remains a challenging task. While the existing numerical models have inherent limitations, the machine learning models fail to capture the spatial and temporal dimensions of the causal factors behind TC formation. In this study, a deep learning model has been proposed that can forecast the formation of a tropical cyclone with a lead time of up to 60 hours with high accuracy. The model uses the high-resolution reanalysis data ERA5 (ECMWF reanalysis 5th generation), and best track data IBTrACS (International Best Track Archive for Climate Stewardship) to forecast tropical cyclone formation in six ocean basins of the world. For 60 hours lead time the models achieve an accuracy in the range of 86.9% - 92.9% across the six ocean basins. The model takes about 5-15 minutes of training time depending on the ocean basin, and the amount of data used and can predict within seconds, thereby making it suitable for real-life usage.
translated by 谷歌翻译
We introduce Patch Aligned Contrastive Learning (PACL), a modified compatibility function for CLIP's contrastive loss, intending to train an alignment between the patch tokens of the vision encoder and the CLS token of the text encoder. With such an alignment, a model can identify regions of an image corresponding to a given text input, and therefore transfer seamlessly to the task of open vocabulary semantic segmentation without requiring any segmentation annotations during training. Using pre-trained CLIP encoders with PACL, we are able to set the state-of-the-art on the task of open vocabulary zero-shot segmentation on 4 different segmentation benchmarks: Pascal VOC, Pascal Context, COCO Stuff and ADE20K. Furthermore, we show that PACL is also applicable to image-level predictions and when used with a CLIP backbone, provides a general improvement in zero-shot classification accuracy compared to CLIP, across a suite of 12 image classification datasets.
translated by 谷歌翻译